Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Precise targeting of POLR2A as a therapeutic strategy for human triple negative breast cancer

An Author Correction to this article was published on 17 January 2020

A Publisher Correction to this article was published on 05 March 2019

This article has been updated

Abstract

TP53 is the most frequently mutated or deleted gene in triple negative breast cancer (TNBC). Both the loss of TP53 and the lack of targeted therapy are significantly correlated with poor clinical outcomes, making TNBC the only type of breast cancer that has no approved targeted therapies. Through in silico analysis, we identified POLR2A in the TP53-neighbouring region as a collateral vulnerability target in TNBC tumours, suggesting that its inhibition via small interfering RNA (siRNA) may be an amenable approach for TNBC targeted treatment. To enhance bioavailability and improve endo/lysosomal escape of siRNA, we designed pH-activated nanoparticles for augmented cytosolic delivery of POLR2A siRNA (siPol2). Suppression of POLR2A expression with the siPol2-laden nanoparticles leads to enhanced growth reduction of tumours characterized by hemizygous POLR2A loss. These results demonstrate the potential of the pH-responsive nanoparticle and the precise POLR2A targeted therapy in TNBC harbouring the common TP53 genomic alteration.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: POLR2A is almost always deleted together with TP53 in TNBCs.
Fig. 2: Synthesis and characterization of nanoparticles for stabilizing POLR2A targeting siRNA.
Fig. 3: Low-pH-activated endo/lysosomal escape.
Fig. 4: Nanoparticle-mediated POLR2A inhibition selectively kills POLR2Aloss cells.
Fig. 5: Targeted POLR2A inhibition selectively suppresses the growth of isogenic-cell-derived POLR2Aloss tumours.
Fig. 6: Targeted POLR2A inhibition selectively suppresses the growth of wild-type-cell-derived POLR2Aloss tumours.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available from the corresponding authors upon request.

Change history

  • 17 January 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

  • 05 March 2019

    The Supplementary Information originally published with this Article was an older version, in which ‘IFN-γ’ was misspelled ‘INF-γ’ in Supplementary Fig. 9 and the β-Actin blot in Supplementary Fig. 13 was the wrong image. The Supplementary Information has now been replaced.

References

  1. Dent, R. et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin. Cancer Res. 13, 4429–4434 (2007).

    Google Scholar 

  2. Foulkes, W. D., Smith, I. E. & Reis-Filho, J. S. Triple-negative breast cancer. N. Engl. J. Med. 363, 1938–1948 (2010).

    CAS  Google Scholar 

  3. Shah, S. P. et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486, 395–399 (2012).

    CAS  Google Scholar 

  4. Denkert, C., Liedtke, C., Tutt, A. & von Minckwitz, G. Molecular alterations in triple-negative breast cancer—the road to new treatment strategies. Lancet 389, 2430–2442 (2017).

    CAS  Google Scholar 

  5. Mayer, E. L. & Burstein, H. J. Chemotherapy for triple-negative breast cancer: is more better? J. Clin. Oncol. 34, 3369–3371 (2016).

    CAS  Google Scholar 

  6. Chin, L., Hahn, W. C., Getz, G. & Meyerson, M. Making sense of cancer genomic data. Gene Dev. 25, 534–555 (2011).

    CAS  Google Scholar 

  7. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    CAS  Google Scholar 

  8. Taylor, B. S. et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 18, 11–22 (2010).

    CAS  Google Scholar 

  9. Bianchini, G., Balko, J. M., Mayer, I. A., Sanders, M. E. & Gianni, L. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat. Rev. Clin. Oncol. 13, 674–690 (2016).

    CAS  Google Scholar 

  10. Weisman, P. S. et al. Genetic alterations of triple negative breast cancer by targeted next-generation sequencing and correlation with tumor morphology. Mod. Pathol. 29, 476–488 (2016).

    Google Scholar 

  11. Ventura, A. et al. Restoration of p53 function leads to tumour regression in vivo. Nature 445, 661–665 (2007).

    CAS  Google Scholar 

  12. Olivier, M. et al. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum. Mutat. 19, 607–614 (2002).

    CAS  Google Scholar 

  13. Joerger, A. C. & Fersht, A. R. The p53 pathway: origins, inactivation in cancer, and emerging therapeutic approaches. Annu. Rev. Biochem. 85, 375–404 (2016).

    CAS  Google Scholar 

  14. Liu, Y. et al. TP53 loss creates therapeutic vulnerability in colorectal cancer. Nature 520, 697–701 (2015).

    CAS  Google Scholar 

  15. Clark, V. E. et al. Recurrent somatic mutations in POLR2A define a distinct subset of meningiomas. Nat. Genet. 48, 1253–1259 (2016).

    Google Scholar 

  16. Novina, C. D. & Sharp, P. A. The RNAi revolution. Nature 430, 161–164 (2004).

    Google Scholar 

  17. Liang, C. et al. Aptamer-functionalized lipid nanoparticles targeting osteoblasts as a novel RNA interference-based bone anabolic strategy. Nat. Med. 21, 288–294 (2015).

    Google Scholar 

  18. Cox, A. D., Fesik, S. W., Kimmelman, A. C., Luo, J. & Der, C. J. Drugging the undruggable RAS: mission possible? Nat. Rev. Drug Discov. 13, 828–851 (2014).

    Google Scholar 

  19. Paul, C. P., Good, P. D., Winer, I. & Engelke, D. R. Effective expression of small interfering RNA in human cells. Nat. Biotechnol. 20, 505–508 (2002).

    Google Scholar 

  20. Morris, K. V., Chan, S. W.-L., Jacobsen, S. E. & Looney, D. J. Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305, 1289–1292 (2004).

    CAS  Google Scholar 

  21. Kumar, P. et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature 448, 39–43 (2007).

    Google Scholar 

  22. Wittrup, A. & Lieberman, J. Knocking down disease: a progress report on siRNA therapeutics. Nat. Rev. Genet. 16, 543–552 (2015).

    Google Scholar 

  23. Bobbin, M. L. & Rossi, J. J. RNA interference (RNAi)-based therapeutics: delivering on the promise? Annu. Rev. Pharmacol. Toxicol. 56, 103–122 (2016).

    CAS  Google Scholar 

  24. Dahlman, J. E. et al. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nat. Nanotechnol. 9, 648–655 (2014).

    Google Scholar 

  25. Zuckerman, J. E. & Davis, M. E. Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat. Rev. Drug Discov. 14, 843–856 (2015).

    CAS  Google Scholar 

  26. Wang, H. et al. A near‐infrared laser‐activated ‘nanobomb’ for breaking the barriers to microRNA delivery. Adv. Mater. 28, 347–355 (2016).

    CAS  Google Scholar 

  27. Cui, J. et al. Ex vivo pretreatment of human vessels with siRNA nanoparticles provides protein silencing in endothelial cells. Nat. Commun. 8, 191 (2017).

    Google Scholar 

  28. Lee, H. et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat. Nanotechnol. 7, 389–393 (2012).

    Google Scholar 

  29. Kong, H. J. & Mooney, D. J. Microenvironmental regulation of biomacromolecular therapies. Nat. Rev. Drug Discov. 6, 455–463 (2007).

    CAS  Google Scholar 

  30. Shu, D. et al. Systemic delivery of anti-miRNA for suppression of triple negative breast cancer utilizing RNA nanotechnology. ACS Nano 9, 9731–9740 (2015).

    CAS  Google Scholar 

  31. Adams, B. D. et al. miR-34a silences c-SRC to attenuate tumor growth in triple-negative breast cancer. Cancer Res. 76, 927–939 (2016).

    CAS  Google Scholar 

  32. Guo, X. & Huang, L. Recent advances in nonviral vectors for gene delivery. Acc. Chem. Res. 45, 971–979 (2012).

    CAS  Google Scholar 

  33. Zhou, J. et al. Biodegradable poly(amine-co-ester) terpolymers for targeted gene delivery. Nat. Mater. 11, 82–90 (2011).

    Google Scholar 

  34. Wang, H., Yu, J., Lu, X. & He, X. Nanoparticle systems reduce systemic toxicity in cancer treatment. Nanomedicine 11, 103–106 (2016).

    CAS  Google Scholar 

  35. Farokhzad, O. C. & Langer, R. Impact of nanotechnology on drug delivery. ACS Nano 3, 16–20 (2009).

    CAS  Google Scholar 

  36. Lu, Y., Aimetti, A. A., Langer, R. & Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2, 16075 (2016).

    Google Scholar 

  37. Kim, H. J., Kim, A., Miyata, K. & Kataoka, K. Recent progress in development of siRNA delivery vehicles for cancer therapy. Adv. Drug Deliv. Rev. 104, 61–77 (2016).

    CAS  Google Scholar 

  38. El Andaloussi, S., Mäger, I., Breakefield, X. O. & Wood, M. J. A. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 12, 347–357 (2013).

    Google Scholar 

  39. Maas, S. L. N., Breakefield, X. O. & Weaver, A. M. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol. 27, 172–188 (2017).

    CAS  Google Scholar 

  40. Alvarez-Erviti, L. et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29, 341–345 (2011).

    Google Scholar 

  41. Zhao, Y. et al. Polymetformin combines carrier and anticancer activities for in vivo siRNA delivery. Nat. Commun. 7, 11822 (2016).

    Google Scholar 

  42. Seipp, C. A., Williams, N. J., Kidder, M. K. & Custelcean, R. CO2 capture from ambient air by crystallization with a guanidine sorbent. Angew. Chem. Int. Ed. 56, 1042–1045 (2017).

    CAS  Google Scholar 

  43. Manders, E. M. M., Verbeek, F. J. & Aten, J. A. Measurement of co-localization of objects in dual-colour confocal images. J. Microsc. 169, 375–382 (1993).

    Google Scholar 

  44. Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016).

    CAS  Google Scholar 

  45. Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346–352 (2012).

    CAS  Google Scholar 

  46. Pereira, B. et al. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat. Commun 7, 11479 (2016).

    CAS  Google Scholar 

  47. Ciriello, G. et al. Comprehensive molecular portraits of invasive lobular breast cancer. Cell 163, 506–519 (2015).

    CAS  Google Scholar 

  48. Wang, H. et al. Multi-layered polymeric nanoparticles for pH-responsive and sequenced release of theranostic agents. Chem. Commun. 51, 7733–7736 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by grants from the American Cancer Society (ACS #120936-RSG-11-109-01-CDD) and NIH (R01CA206366) to X.H. and X.L., the Vera Bradley Foundation for Breast Cancer Research to X.L., a Pelotonia post-doctoral fellowship to J.X. and the American Cancer Society Institutional Research Grant to Y. Liu.

Author information

Authors and Affiliations

Authors

Contributions

X.H. and X.L. conceived the project and supervised the study. X.H., X.L., J.X. and Y. Liu designed experiments. J.X. and Y. Liu conducted experiments with assistance from Y. Li, H.W., K.V.D.J., P.A., S.L. and J.W. X.H., X.L., J.X., Y. Liu, S.S., Y. Li, K.V.D.J., Y.Z. and G.Z. analysed data. J.X. and Y. Liu wrote the manuscript draft. X.H., X.L. and S.S. edited the manuscript. All authors approved the manuscript.

Corresponding authors

Correspondence to Xiongbin Lu or Xiaoming He.

Ethics declarations

Competing interests

X.H. and X.L. have applied for patents related to this study.

Additional information

Journal peer review information: Nature Nanotechnology thanks Elsa Flores, Peixuan Guo and other anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–13, Supplementary notes 1,2, Supplementary references

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Liu, Y., Li, Y. et al. Precise targeting of POLR2A as a therapeutic strategy for human triple negative breast cancer. Nat. Nanotechnol. 14, 388–397 (2019). https://doi.org/10.1038/s41565-019-0381-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-019-0381-6

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research